Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Progress in Additive Manufacturing ; 2023.
Article in English | Scopus | ID: covidwho-2234808

ABSTRACT

The publication of this article unfortunately contained mistakes. The funding note was not correct. The corrected funding note is given below. Funding The current study was funded by;The National Key Research and Development Program of China [Grant No. 2019QY(Y)0502];The Key Research and Development Program of Shaanxi Province [Grant No. 2020ZDLSF04- 07];The National Natural Science Foundation of China [Grant No. 51905438];The Fundamental Research Funds for the Central Universities [Grant No. 31020190502009];The Innovation Platform of Bio fabrication [Grant No. 17SF0002];and China postdoctoral Science Foundation [Grant No. 2020M673471]. The original article has been corrected. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.

2.
Progress in Additive Manufacturing ; 2022.
Article in English | Web of Science | ID: covidwho-2175384

ABSTRACT

The exponential rise of healthcare problems like human aging and road traffic accidents have developed an intrinsic challenge to biomedical sectors concerning the arrangement of patient-specific biomedical products. The additively manufactured implants and scaffolds have captured global attention over the last two decades concerning their printing quality and ease of manufacturing. However, the inherent challenges associated with additive manufacturing (AM) technologies, namely process selection, level of complexity, printing speed, resolution, biomaterial choice, and consumed energy, still pose several limitations on their use. Recently, the whole world has faced severe supply chain disruptions of personal protective equipment and basic medical facilities due to a respiratory disease known as the coronavirus (COVID-19). In this regard, local and global AM manufacturers have printed biomedical products to level the supply-demand equation. The potential of AM technologies for biomedical applications before, during, and post-COVID-19 pandemic alongwith its relation to the industry 4.0 (I4.0) concept is discussed herein. Moreover, additive manufacturing technologies are studied in this work concerning their working principle, classification, materials, processing variables, output responses, merits, challenges, and biomedical applications. Different factors affecting the sustainable performance in AM for biomedical applications are discussed with more focus on the comparative examination of consumed energy to determine which process is more sustainable. The recent advancements in the field like 4D printing and 5D printing are useful for the successful implementation of I4.0 to combat any future pandemic scenario. The potential of hybrid printing, multi-materials printing, and printing with smart materials, has been identified as hot research areas to produce scaffolds and implants in regenerative medicine, tissue engineering, and orthopedic implants.

3.
Rapid Prototyping Journal ; : 22, 2021.
Article in English | Web of Science | ID: covidwho-1494245

ABSTRACT

Purpose Additive manufacturing (AM) technology has a huge influence on the real world because of its ability to manufacture massively complicated geometrics. The purpose of this study is to use CiteSpace (CS) visual analysis to identify fused deposition modeling (FDM) research and development patterns to guide researchers to decide future research and provide a framework for corporations and organizations to prepare for the development in the rapid prototyping industry. Three-dimensional printing (3DP) is defined to budget minimize manufactured input and output for aviation and the medical product industrial sectors. 3DP has implemented its potential in the Coronavirus Disease of 2019 (COVID-19) reaction. Design/methodology/approach First, 396 original publications were extracted from the web of science (WOS) with the comprehensive list and did scientometrics analysis in CS software. The parameters are specified in CS including the span (from 2011 to 2019, one year slice for the co-authorship and the co-accordance analysis), visualization (show the merged networks), specific criteria for selection (top 20%), node form (author, organization, region, reference cited;cited author, journal and keywords) and pruning (pathfinder and slicing network). Finally, correlating data was studied and showed the results of the visualization study of FDM research were shown. Findings The framework of FDM information is beginning to take shape. About hot research topics, there are "Morphology," "Tensile Property by making Blends," "Use of Carbon nanotube in 3DP" and "Topology optimization." Regarding the latest research frontiers of FDM printing, there are "Fused Filament Fabrication," "AM," in FDM printing. Where "Post-processing" and "environmental impact" are the research hotspots in FDM printing. These research results can provide insight into FDM printing and useful information to consider the existing studies and developments in FDM researchers' analysis. Research limitations/implications Despite some important obtained results through FDM-related publications' visualization, some deficiencies remain in this research. With >99% of articles written in English, the input data for CS was all downloaded from WOS databases, resulting in a language bias of papers in other languages and neglecting other data sources. Although, there are several challenges being faced by the FDM that limit its wide variety of applications. However, the significance of the current work concerning the technical and engineering prospects is discussed herein. Originality/value First, the novelty of this work lies in describing the FDM approach in a Scientometric way. In Scientometric investigation, leading writers, organizations, keywords, hot research and emerging knowledge points were explained. Second, this research has thoroughly and comprehensively examined the useful sustainability effects, i.e. economic sustainability, energy-based sustainability, environmental sustainability, of 3DP in industrial development in qualitative and quantitative aspects by 2025 from a global viewpoint. Third, this work also described the practical significance of FDM based on 3DP since COVID-19. 3DP has stepped up as a vital technology to support improved healthcare and other general response to emergency situations.

SELECTION OF CITATIONS
SEARCH DETAIL